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Quasi-stationary trajetories of the HMF model: a topologial perspetiveFraniso A. Tamarit∗ and Germán Maglione†Faultad de Matemátia, Astronomía y Físia, Universidad Naionalde Córdoba, Ciudad Universitaria, 5000 Córdoba, ArgentinaDaniel A. Stariolo‡Departamento de Físia, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, BrazilCelia Anteneodo§Departamento de Físia, Pontifíia Universidade Católia do Rio de Janeiro,CP 38071, 22452-970, Rio de Janeiro, Brazil andCentro Brasileiro de Pesquisas Físias, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, Brazil(Dated: November 1, 2004)We employ a topologial approah to investigate the nature of quasi-stationary states of the MeanField XY Hamiltonian model that arise when the system is initially prepared in a fully magnetizedon�guration. By means of numerial simulations and analytial onsiderations, we show that, alongthe quasi-stationary trajetories, the system evolves in a manifold of ritial points of the potentialenergy funtion. Although these ritial points are maxima, the large number of diretions withmarginal stability may be responsible for the slow relaxation dynamis and the trapping of thesystem in suh trajetories.PACS numbers: PACS numbers: 05.20.-y,02.40.-k,64.60.CnThe so alled Mean Field XY Hamiltonian Model(HMF model) [1℄ has reeived great attention duringthe last years in the statistial mehanis ommunity,mainly beause of the rihness of its dynamial behavior[2, 3, 4, 5, 6, 7, 8℄. The model is de�ned by a set of Npartiles, or rotators, moving on a unitary irle. Thedynamis of the system is ruled by the following Hamil-tonian:
H =

1

2

N
∑

i=1

p2

i +
1

2N

N
∑

i,j=1

[1 − cos (θi − θj)] . (1)Here θi represents the rotation angle of the i-th parti-le (with θi ∈ (0, 2π]) and pi its onjugate momentum.This model an be onsidered as a kineti version of themean �eld XY magneti model with ferromagneti in-terations. From a thermodynamial point of view themodel is extremely simple, in ontrast to its rih andstill not well understood dynamial behavior. On oneside, being a mean �eld model, its equilibrium thermo-dynamis an be exatly solved in the anonial ensem-ble, yielding a seond order ferromagneti phase transi-tion. On the other side its relaxational dynamis is veryomplex and equilibrium is not easily attained from animportant set of initial onditions [7, 8, 9℄. The originof this kineti omplexity is elusive and some similaritywith the phenomenology of disordered systems has beenadvoated [5, 6℄. Nevertheless, the existene of this re-lation is not at all obvious. In �rst plae, there is noimposed disorder on the Hamiltonian. Seond, the ou-plings are all ferromagneti, avoiding in this ase any kindof strutural frustration. Finally, the in�nite range of the

interations further simpli�es both the dynamis and thethermodynamis of the model, avoiding any topologialonsideration on the struture of the lattie where par-tiles are loated. On the other hand, and also due tothe in�nite range of the interations, its dynamis anbe e�iently integrated in omputer simulations. There-fore, this is an exellent prototype for analyzing the mi-rosopi dynamis of a �nite system lose to a ritialpoint.The miroanonial simulations of the HMF reproduemany of the anomalous ritial behaviors observed in nu-lear and luster fragmentation proesses. In partiular,depending on the initial preparation of the system, it ispossible to verify the existene of negative spei� heaturves, qualitatively similar to those observed in reentfragmentation experiments in small lusters (see for in-stane [10℄ and referenes therein). But the interest onthis model largely exeeds this motivation. The exis-tene of quasi-stationary solutions whose life-times di-verge [2, 7℄, in the thermodynamial limit N → ∞, hasraised the question on whether it is possible or not toonstrut a measure theory able to predit the station-ary values of physial observables in long standing outof equilibrium regimes [11℄. Furthermore, the existeneof a glassy-like relaxation dynamis [5, 6℄ along quasi�stationary trajetories, has opened new hallenging ques-tions on the origin of suh unexpeted behavior for an un-frustrasted non disordered model. Finally, in the last fewyears, the HMF model has been used, as a paradigmatiexample, for the study of the so alled Topologial Hy-pothesis [12, 13, 14℄ whih asserts that phase transitions,even in a �nite system, an be identi�ed by searhing fordrasti topologial hanges in the submanifolds of the in-



2teration potential.Conerning the HMF thermodynamis [1℄, the usualmiroanonial and anonial alulations predit thatthe system su�ers a seond order phase transition at Tc =
1/2 (whih orresponds to an internal energy per partile
Uc/N = 3/4), from a low temperature ordered phase toa high temperature disordered one. Atually, one anassoiate to eah rotator a loal magnetization: ~mi =
(cos θi, sin θi), and then de�ne the order parameter of thetransition as the global magnetization:

~M = (Mx, My) =
1

N

∑

i

~mi. (2)At the ritial energy, M ≡ | ~M | vanishes ontinuously asthe system is heated from the ordered phase.Conerning the dynamis, when the system is preparedvery far from equilibrium, for energies just below the rit-ial one, the system gets trapped into quasi-equilibriumtrajetories. These trajetories are haraterized by timeaverages of one-time observables whih reah, after arapid initial transient, almost onstant values whih donot oinide with those predited by miroanonial oranonial ensemble alulations [2℄. The average timethat a system of size N remains in a quasi�stationarytrajetory grows with N [2, 7℄. Therefore, if the systemwere in�nite, it would remain there forever, without everreahing true equilibrium. An even more surprising se-nario appears when one onsiders the relaxation of thetwo�time orrelation funtion C(t, t′) (either in the wholephase spae [5℄ or onsidering only the momenta spae[6℄). The expliit dependene of C on both times t and t′indiates the loss of time�translational invariane, properof equilibrium states, and the appearane of memory ef-fets, a phenomenon usually alled aging. The saling lawof the two�time autoorrelation funtions [5, 6℄ is quali-tatively similar to that observed in some real spin glasses[15℄. Nevertheless we will show that the physial meh-anisms behind the quasi-stationary states of the HMFare ompletely di�erent from those present in disorderedsystems.In this work we will show, through numerial simula-tions, that the omplex nonequilibrium quasi�stationaryregime observed just below the ritial energy an be in-terpreted from a topologial point of view. Our analysiswill fous on the topology of the surfae de�ned by thepotential energy in the on�guration spae. The HMFpotential energy, as well as any Curie-Weiss like poten-tial, an be written in terms of the order parameter ofthe system:
V =

N

2
(1 − M2) . (3)Note that the potential energy per partile V/N takesvalues in the interval 0 ≤ V/N ≤ vc ≡ 1/2. The lower

limit orresponds to the ase of the fully ordered on�g-urations (hene M = 1) and the upper bound to a om-pletely disordered on�guration. The on�guration spaemanifold M is an N -dimensional torus parametrized bythe N angles θi. The ritial points (CPs) of M arethose points for whih all the N derivatives of V/N van-ish, i.e., ∂(V/N)/∂θi = 0, for i = 1, . . . , N . Making useof the in�nite range of the interations, one an write thederivatives of the potential in terms of the two ompo-nents of the order parameter, namely,
∂V/N

∂θi
=

1

N
Mx sin θi −

1

N
My cos θi = 0 . (4)Furthermore, CPs an be lassi�ed aording to theeigenvalues of the Hessian of V/N , that for the HMF anbe written as H = D + B [13℄, where

Bij = −
1

N2
(1 − δij) cos(θi − θj) −

1

N2
δij ,

Dij =
δij

N
(Mx cos θi + My sin θi) . (5)In our work we use the following protool: startingfrom a far-from-equilibrium on�guration, we integratenumerially the set of Hamilton equations of the systemusing a fourth order sympleti method with a very smalltime step (typially dt = 0.01). Along the trajetories weevaluate, at eah time step, the modulus of the N deriva-tives of V/N given by (4) and identify the maximum over

i = 1, . . . , N , through
λ = N max

i

∣

∣

∣

∣

∂(V/N)

∂θi

∣

∣

∣

∣

. (6)Then, eah time that λ = 0, it means that the systemreahes a CP (atually, due to the �niteness of time step,
λ is never exatly zero, but it gets loser as dt dereases).Let us �rst analyze the behavior of the system in thedisordered phase. It is important to stress that, althoughthe system ultimately relaxes to equilibrium, a slow re-laxation has been observed when starting very far fromequilibrium [8℄. This is probably due to the fat thatrotators move almost freely and trajetories are weaklyhaoti [3, 16℄. In Fig. 1, we plot V/N and λ as a funtionof t, for U/N = 10, in the disordered phase well abovethe ritial energy Uc/N = 3/4. The system has beeninitially prepared in a �water-bag� on�guration, with allthe rotators aligned along the x axis (θi = 0, for all i)and the momenta drawn from a uniform distribution (a-tually we used regularly spaed momenta [17℄). Fig. 1indiates that the system periodially visits CPs of thepotential, orresponding to V/N = 1/2 (hene M = 0).In fat the observed period is of the order of the meanperiod of rotation [16℄.Let us now ompare these results with those obtainedin the low energy phase, just below the phase transi-tion. In this ase, quasi-stationary solutions emerge, dis-playing a kind of glassy-like dynamis haraterized by
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FIG. 1: Time evolution of (a) λ, the largest modulus ofthe derivatives of V , and (b) V/N , the potential energy perpartile, for a system of 500 partiles and U/N = 10, wellabove the phase transition. The system was initially preparedin a regular water-bag on�guration. The dotted line in (b)orresponds to the equilibrium value in the thermodynamilimit.
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FIG. 2: Time evolution of λ (a) and V/N (b) for a system of
500 partiles and U/N = 0.69, just below the phase transi-tion. The system was initially prepared in a regular water-bagon�guration. The dotted and dashed lines in (b) orrespondto equilibrium and metaequilibrium values in the thermody-nami limit, respetively.weak haos, non-Gaussian veloity distributions and sub�aging, as mentioned above. In Fig. 2, we plot V/N and
λ vs. t for U/N = 0.69 and water-bag initial onditions.Here we verify that again the system sequentially visitsone CP of the potential energy after another, also orre-sponding to M = 0. However, at variane with the high

energy phase, the time intervals ∆τ elapsed between twosuessive CPs do not present any pattern of periodi-ity. On the ontrary, the system visits the CPs in anapparently disordered way. The probability distributionfuntion (PDF) P (∆τ) of time intervals between CPs isshown in Fig. 3. P (∆τ) an be reasonably �tted by apower law deay. Other striking features of the dynam-ial behavior an be noted in Fig. 2. First, the systemis initialized in a on�guration at the bottom of the po-tential energy V/N = 0 and it goes almost abruptly to aregion with a mean potential energy per partile largerthan the equilibrium mean potential energy, and staysaround this level during the whole time span of the sim-ulation. In fat it goes lose to the top of the potentialenergy landsape, V/N ≈ 1/2, tries to esape downhillbut uses the kineti energy gain to attain again CPs atthe top. Somehow the system is not able to relax fromthis level to the equilibrium level during very large timesales. The on�gurations sampled orrespond to thequasi-stationary states and the system stays there dur-ing time spans whih sale with the size N, being trappedforever in the thermodynami limit. One an say that,in on�guration spae, quasi-stationary states are alwaysnear CPs of the landsape.
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FIG. 3: Probability distribution funtion P (∆τ ) of the timeintervals between two onseutive ritial points, for the samesystem of Fig. 2.We next address the e�et of system size. The samequalitative behavior an be observed, with a bigger nu-merial e�ort, for larger systems. The departure fromthe CPs (measured by the height of λ between onseu-tive CPs) dereases as N inreases, but the distributionof ∆τ remains unaltered. From Eqs. (3) and (4), it isstraightforward to see that at the ritial level vc = 1/2the CPs are ontinuously degenerate. Consequently as Ngrows and �utuations outside the ritial level diminishthe system wanders more and more inside this manifoldof CPs. As the energy dereases, the CPs are visited moresparsely, down to U/N ≈ 0.67, where the system stopswandering among CPs. It is noteworthy that spatially



4homogeneous states lose Vlasov stability approximatelyat that energy [17℄.
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FIG. 4: Time evolution of λ and V/N for a system of 500partiles and U/N = 0.69, just below the phase transition.The system was initially prepared in a lose to equilibriumon�guration. The dotted line orresponds to the equilibriumvalue of V/N .A ompletely di�erent senario emerges when the sys-tem is prepared, at a given energy, in an almost equi-librated initial on�guration. The plot of λ vs. t pre-sented in Fig. 4 learly indiates that, in this ase, thesystem does not wander among CPs. Its potential en-ergy per partile (and then also its temperature) rapidlystarts �utuating around their anonial values, showingstrong �nite size e�ets.A ruial piee of information omes from the stabil-ity of the visited CPs. Sine apturing the exat timeat whih the dynamis passes through a CP is a di�ulttask, numerial evaluation of the Hessian at CPs arisingfrom the dynamis may lead to wrong estimates. There-fore it is important to perform some analytial alula-tions. In order to do so, let us reall that, both in the highenergy phase and in the quasi-stationary states, the CPsorrespond to V/N = 1/2 (see Figs. 1 and 2), hene theyare points of M with zero magnetization. Moreover, thedistribution of angles at those points is approximatelyuniform [17℄. A on�guration with these harateristisfor whih analytial alulations are possible, onsists inregularly distributed angles in the interval (0, 2π], i.e.,
θk = 2πk/N , k = 1, ..., N for even N . If M = 0, fromEq. (5), the Hessian of the potential energy is H = B.Then, for the regular on�guration we have

H = B = −
1

N2
(11+ A), (7)where Akl = cos(2π(k− l)/N). This irulant matrix anbe diagonalized in Fourier spae, yielding the following

eigenvalues of the Hessian matrix
Hl = −

1

N2

(

cos(πl) + 2

N/2
∑

r=0

cos(2πrl/N) cos(2πr/N)

)

,(8)for 1 ≤ l ≤ N . Thus, we obtain H1 = HN−1 = −1/(2N)while the remaining eigenvalues are null. This meansthat at these CPs there are two unstable diretions and
N −2 marginal ones. This piture remains valid for moregeneral situations than those restrited to the partiularregular ases. In fat, we have veri�ed that when anglesare randomly hosen in the interval (0, 2π] there are twoeigenvalues with values lose to −1/(2N) and the remain-ing N−2 vanish. Finally, the eigenvalues alulated fromthe on�gurations of the dynamis very lose to CPs arealso onsistent with this piture. >From this analysisit is lear that in the high energy phase and also in thequasi-stationary low energy states, the systems wandersin an almost �at landsape.In the high energy phase, energy is mainly kineti,leading to ballisti behavior in the �at landsape ofCPs during long time sales. In the low energy, quasi-equilibrium regime, kineti energy is omparable to thepotential one. At this relatively low energies di�usionis slower than ballisti. Nevertheless, due to the �atnessof on�guration spae superdi�usive behavior is observed[8℄.Summarizing, we have seen, by means of numerialsimulations, that the quasi-stationary trajetories ob-served in the HMF model an be interpreted in termsof the topologial properties of the potential energy perpartile V/N of the model. Starting from a far fromequilibrium on�guration with V/N = 0, the system ini-tially dereases as muh as possible its kineti energy andsettles at the �at top of its potential energy. The sim-ulations on�rm that along the quasi stationary statesthe system wanders among di�erent CPs with only twonegative diretions and N − 2 marginal ones. Moreover,CPs at the upper ritial level are ontinuously degen-erate. This suggests that one inside this ritial sub-manifold the system annot go out easily and relax toequilibrium. A probable senario in the thermodynamilimit is that, as the �utuations of the potential energylose to the ritial level vc = 1/2 go to zero, the systemkeeps wandering ontinuously inside the manifold of CPsand onsequently remains forever out of thermodynamiequilibrium.This work was partially supported by CONICET (Ar-gentina), Agenia Córdoba Cienia (Argentina), Sere-taría de Cienia y Tenología de la Univ. Na. Córdoba(Argentina) and CNPq (Brazil).
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